Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 112046, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593508

RESUMO

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.

2.
Front Microbiol ; 15: 1383509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655086

RESUMO

To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1ß, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1ß levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.

3.
J Control Release ; 368: 483-497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458571

RESUMO

Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Óxido de Zinco , Animais , Camundongos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Óxido de Zinco/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Natamicina/uso terapêutico , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL
4.
Exp Eye Res ; 240: 109830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364932

RESUMO

Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.


Assuntos
Aspergilose , Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Matrinas , Animais , Camundongos , Aspergillus fumigatus/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-18 , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Piroptose , Fator 2 Relacionado a NF-E2 , Ceratite/microbiologia , Inflamação , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Caspase 1/metabolismo , Camundongos Endogâmicos C57BL
5.
ACS Infect Dis ; 9(6): 1196-1205, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37141176

RESUMO

This study aimed to determine the mechanisms of antifungal and anti-inflammation effects of pseudolaric acid B (PAB) on Aspergillus fumigatus (A. fumigatus) keratitis. In vitro MIC assay and crystal violet staining were conducted to evaluate the efficacy of PAB against A. fumigatus. PAB inhibited A. fumigatus growth and inhibited the formation of fungal biofilms in a dose-dependent manner. Molecular docking analysis revealed that PAB possesses strong binding properties with Rho1 of A. fumigatus, which is devoted to encoding (1,3)-ß-d-glucan of A. fumigatus. RT-PCR results also showed that Rho1 was inhibited by PAB. In vivo, PAB treatment reduced clinical scores, fungal load, and macrophage infiltration, which were increased by A. fumigatus in mice corneas. In addition, PAB treatment suppressed the expression of Mincle, p-Syk, and cytokines (TNF-α, MIP2, iNOS, and CCL2) in infected corneas and in RAW264.7 cells, which were tested by RT-PCR, Western blot, and enzyme-linked Immunosorbent Assay. Notably, trehalose-6,6-dibehenate, an agonist of Mincle, pretreatment reversed the regulatory function of PAB in RAW 264.7 cells. Moreover, flow cytometry showed that PAB upregulated the ratio of M2/M1 macrophages in A. fumigatus-infected corneas and RAW264.7 cells. In conclusion, PAB produced antifungal activities against A. fumigatus and decreased the inflammatory response in mouse A. fumigatus keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Animais , Camundongos , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Simulação de Acoplamento Molecular , Aspergillus fumigatus/genética , Inflamação/tratamento farmacológico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico
6.
Front Microbiol ; 14: 1119568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876115

RESUMO

Aspergillus fumigatus keratitis is a potential blinding disease associated with A. fumigatus invasion and excessive inflammatory response. Benzyl isothiocyanate (BITC) is a secondary metabolite with broad antibacterial and anti-inflammatory activity extracted from cruciferous species. However, the role of BITC in A. fumigatus keratitis has not been discovered yet. This study aims to explore the antifungal and anti-inflammatory effects and mechanisms of BITC in A. fumigatus keratitis. Our results provided evidences that BITC exerted antifungal effects against A. fumigatus by damaging cell membranes, mitochondria, adhesion, and biofilms in a concentration-dependent manner. In vivo, fungal load and inflammatory response including inflammatory cell infiltration and pro-inflammatory cytokine expression were reduced in BITC-treated A. fumigatus keratitis. Additionally, BITC significantly decreased Mincle, IL-1ß, TNF-α, and IL-6 expression in RAW264.7 cells that stimulated by A. fumigatus or Mincle ligand trehalose-6,6-dibehenate. In summary, BITC possessed fungicidal activities and could improve the prognosis of A. fumigatus keratitis by reducing fungal load and inhibiting the inflammatory response mediated by Mincle.

7.
Int Immunopharmacol ; 116: 109782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731151

RESUMO

Fungal keratitis is an infectious vision-threatening disease that has a poor prognosis, and the clinical therapeutic drugs have multiple limitations, such as epithelial toxicity and low bioavailability. Therefore, new antifungal treatment strategies must be developed. 4-Methoxycinnamic acid (MCA) is a widely occurring natural phenolic acid that has been proven to have multiple effects, such as antibacterial, antifungal, anti-inflammatory, neuroprotective, and inhibiting cancer. In this research, we explored the effects and underlying mechanisms of MCA on A. fumigatus keratitis and the antifungal effects of the combination of MCA and natamycin (NATA) on A. fumigatus. We found that MCA exerts antifungal effects by inhibiting the synthesis of the fungal cell wall, changing the permeability of fungal cell membranes. Moreover, the MCA-NATA combination exhibited synergy for A. fumigatus. In addition, MCA exerted an anti-inflammatory effect by downregulating the inflammatory factors (IL-1ß, TNF-α, IL-6, and iNOS) in C57BL/6 mice and RAW264.7 cells. The anti-inflammatory mechanism of MCA was associated with the Mincle signal pathway. In summary, MCA acts as a potential therapeutic drug for fungal keratitis and a potential antifungal sensitizer for natamycin. MCA inhibits fungal cell wall synthesis, destroys the permeability of fungal cell membranes, and mediates the anti-inflammatory, immune response of the host.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Animais , Camundongos , Natamicina/farmacologia , Natamicina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Camundongos Endogâmicos C57BL , Infecções Oculares Fúngicas/tratamento farmacológico
8.
Eur J Pharmacol ; 945: 175607, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822458

RESUMO

Fungal keratitis (FK) is a blinding ocular disease, which mainly results from fungal damage and excessive inflammation. Pentoxifylline, a kind of methylxanthine, has been discovered to have anti-inflammatory properties in various infectious diseases, hinting a potential therapeutic effect on treating corneal fungal infection. Whereas, the therapeutic impact of pentoxifylline on fungal keratitis is still uncertain. This study investigated the antifungal capability against Aspergillus fumigatus and the anti-inflammatory role of pentoxifylline by activating nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase1 (HO1) pathway in the process of FK. In our research, we demonstrated that pentoxifylline could effectively inhibit fungal growth and inflammatory reaction. Pentoxifylline reduced the production of pro-inflammatory factors by stimulating the Nrf2/HO1 pathway. Although there was no statistical difference between the curative efficacy of pentoxifylline and natamycin application to FK, pentoxifylline could promote corneal epithelial repair and was less toxicity to the ocular surface than natamycin. In conclusion, pentoxifylline performs antifungal and anti-inflammatory effects by lessening the fungus burden and activating the Nrf2/HO1 pathway, hinting that it has the potential to be a new therapeutic medication for Aspergillus fumigatus keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Pentoxifilina , Humanos , Animais , Camundongos , Aspergillus fumigatus , Natamicina/uso terapêutico , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fator 2 Relacionado a NF-E2 , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Ceratite/metabolismo , Inflamação/tratamento farmacológico , Infecções Oculares Fúngicas/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
9.
Int Immunopharmacol ; 115: 109721, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641891

RESUMO

PURPOSE: We aimed to investigate the therapeutic role of dimethyl fumarate (DMF) in fungal keratitis. METHODS: Human corneal epithelial cells (HCECs) and mouse models of fungal keratitis were used in this study. The antifungal effect of DMF on Aspergillus fumigatus (A. fumigatus) was confirmed by examining the minimum inhibitory concentration (MIC), biofilm formation, conidial adherence and corneal fungal loads. Slit-lamp photography, haematoxylin and eosin staining and immunostaining were used to assess the severity of corneal impairment. RT-PCR, western blot, ELISA, immunohistochemistry and immunostaining were performed to examine the effects of DMF on the expression of the inflammatory mediators during fungal infection. RESULTS: In vitro, DMF limited A. fumigatus growth, biofilm formation, and conidial adherence and reduced the mRNA levels of AldA, GlkA, GAPDH, HxkA, PgkA, Sdh2, GelA and ChsF in A. fumigatus. In vivo, DMF effectively decreased corneal fungal loads. DMF attenuated corneal inflammatory impairment by suppressing inflammatory cell accumulation and downregulating cytokine expression. DMF notably downregulated the high expression of NLRP3, cleaved GSDMD, cleaved caspase-1, mature IL-1ß and mature IL-18 induced by fungi. The production of Nrf2 and HO-1 could be further increased by DMF in infected HCECs. Nrf2 siRNA pretreatment counteracted DMF-mediated downregulation of the expression of the active forms of IL-18, IL-1ß, caspase-1 and GSDMD. CONCLUSION: DMF limits fungal growth by suppressing biofilm formation, conidial adherence and respiratory metabolism. It also exerts an anti-inflammatory effect on fungal keratitis by inhibiting pyroptosis, which could be regulated by Nrf2. Our results suggest that DMF plays a therapeutic role in fungal keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Camundongos , Animais , Humanos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Interleucina-18 , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Piroptose , Fator 2 Relacionado a NF-E2 , Ceratite/microbiologia , Aspergillus fumigatus/fisiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Caspase 1 , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
ACS Infect Dis ; 8(11): 2362-2373, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36283079

RESUMO

Fungal keratitis is a serious infectious keratopathy related to fungal virulence and excessive inflammatory responses. Autophagy exhibits a potent ability to resolve inflammation during fungal infection. This study aimed to investigate the protective function of flavopiridol in Aspergillus fumigatus keratitis and explore its effects on autophagy. In our study, the corneas of the fungal keratitis mouse model were treated with 5 µM flavopiridol. In vitro, RAW 264.7 cells were pretreated with 200 nM flavopiridol before fungal stimulation. A. fumigatus was incubated with flavopiridol, and the antifungal activity of flavopiridol was detected. Our results indicated that flavopiridol treatment notably reduced clinical scores as well as cytokines expression of infected corneas. In infected RAW 264.7 cells, flavopiridol treatment inhibited IL-1ß, IL-6, and TNF-α expression but promoted IL-10 expression. Transmission electron microscopy (TEM) images showed that more autolysosomes were present in infected corneas and RAW 264.7 cells after flavopiridol treatment. Flavopiridol treatment notably upregulated the protein expression of LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, an inhibitor of autophagy) pretreatment counteracted the cytokine regulation induced by flavopiridol. Moreover, flavopiridol promoted the phagocytosis of RAW 264.7 cells. Flavopiridol also exhibited antifungal activity by restricting fungal growth and limiting fungal biofilm formation and conidial adhesion. In conclusion, flavopiridol significantly alleviated the inflammation of fungal keratitis by activating autophagy. In addition, flavopiridol promoted the phagocytosis of RAW 264.7 cells and exhibited antifungal function, indicating the potential therapeutic role of flavopiridol in fungal keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Camundongos , Animais , Aspergillus fumigatus/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Camundongos Endogâmicos C57BL , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Inflamação/tratamento farmacológico , Autofagia , Citocinas/metabolismo
11.
Biomater Adv ; 136: 212771, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929310

RESUMO

Fungal keratitis is a severe infectious corneal disease with a high rate of incidence and blindness. Since traditional treatments natamycin (NATA) eye drops, exhibit poor dissolution and bioavailability, and the efficacy of current therapeutic approaches remains limited. In this study, we innovatively utilized mesoporous carbon (Meso-C) and microporous carbon (Micro-C) as nanocarriers loaded with the antifungal drug NATA and silver nanoparticles (Ag-NPs). Porous carbon loaded with NATA and Ag-NPs has not previously been studied in fungal keratitis. Due to the mesoporous structure, high surface area and larger pore volume of Meso-C, it displayed greater superiority in sustained drug release and drug dispersity than Micro-C. Moreover, Meso-C could adsorb inflammatory cytokines during fungal infection. In vitro, Meso-C/NATA/Ag showed excellent antifungal effects. In vivo, compared with pure NATA treatment, Meso-C/NATA/Ag exhibited significantly improved therapeutic effects and reduced dosing frequency when treating fungal keratitis. Our study is the first to report the sustained drug release and improved drug dispersity of Meso-C/NATA and demonstrates that NATA and Ag-NPs-loaded Meso-C has therapeutic effects against fungal keratitis.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Nanopartículas Metálicas , Antifúngicos/farmacologia , Carbono/uso terapêutico , Úlcera da Córnea/tratamento farmacológico , Liberação Controlada de Fármacos , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Natamicina/farmacologia , Prata/farmacologia
12.
Front Oncol ; 12: 958170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003786

RESUMO

The intraocular malignancies, which mostly originate from the retina and uvea, exhibit a high incidence of blindness and even death. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular malignancies in adults and children, respectively. The high risks of distant metastases lead to an extremely poor prognosis. Nowadays, various epidemiological studies have demonstrated that diabetes is associated with the high incidence and mortality of cancers, such as liver cancer, pancreatic cancer, and bladder cancer. However, the mechanisms and interventions associated with diabetes and intraocular malignancies have not been reviewed. In this review, we have summarized the associated mechanisms between diabetes and intraocular malignancy. Diabetes mellitus is a chronic metabolic disease characterized by prolonged periods of hyperglycemia. Recent studies have reported that the abnormal glucose metabolism, insulin resistance, and the activation of the IGF/insulin-like growth factor-1 receptor (IGF-1R) signaling axis in diabetes contribute to the genesis, growth, proliferation, and metastases of intraocular malignancy. In addition, diabetic patients are more prone to suffer severe complications and poor prognosis after radiotherapy for intraocular malignancy. Based on the common pathogenesis shared by diabetes and intraocular malignancy, they may be related to interventions and treatments. Therefore, interventions targeting the abnormal glucose metabolism, insulin resistance, and IGF-1/IGF-1R signaling axis show therapeutic potentials to treat intraocular malignancy.

13.
Int Immunopharmacol ; 110: 108992, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810488

RESUMO

PURPOSE: To investigate the anti-inflammatory and antifungal role of ß-ionone (BI) in fungal keratitis (FK). METHODS: In vitro antifungal activity of BI against Aspergillus fumigatus (A. fumigatus) was evaluated by using minimum inhibitory concentration (MIC), crystal violet staining, biofilm biomass measurement, propidium iodide uptake test, and adherence assay. And RT-PCR was carried out to measure the levels of RodA, RodB, Rho, FKs, CshA-D, RlmA, Cyp51A-B and Cdr1B. Network pharmacology analysis was applied to predict the relationship between BI and FK. Cell Count Kit-8 (CCK8) assay was utilized to detect the cytotoxicity of BI to RAW264.7 and immortalized human corneal epithelial cells (HCECs). The underlying mechanism of BI at regulating the level of inflammatory factors in FK was assessed by RT-PCR, ELISA and Western blot in vitro and in vivo. The therapeutic effect of BI has investigated in A. fumigatus keratitis by employing the clinical score, pathological examination, plate count, immunofluorescence and myeloperoxidase (MPO) assay. We also used the slit-lamp microscopy, clinical scores, and HE staining to assess the effect of natamycin compared with BI treatment in vivo. RESULTS: BI suppressed the growth of A. fumigatus and had a significant effect on A. fumigatus biofilms and membrane permeability. RT-PCR demonstrated that exposure of A. fumigatus to BI inhibited the expression of genes that function in hydrophobin (RodA, RodB), cell wall integrity (Rho, FKs, CshA-D, RlmA), azole susceptibility (Cyp51A-B, Cdr1B). Network pharmacology showed that the effects of BI in FK implicate with C-type lectin receptor signaling pathway. In vivo, after A. fumigatus infection, BI treatment markedly reduced the severity of FK by decreasing clinical score, neutrophil recruitment, and fungal load. And BI treatment also obviously reduced the expression of inflammatory cytokines, Lectin-like oxidized LDL receptor (LOX-1), phosphorylation of p38MAPK and p-JNK versus the DMSO-treated group. BI and natamycin both significantly increased corneal transparency and decreased inflammatory cell recruitment in the FK in the mice model. CONCLUSION: These results indicated that BI had fungicidal activities against A. fumigatus. It also ameliorated FK in mice by reducing inflammation, which was regulated by LOX-1, p-p38MAPK and p-JNK.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus/fisiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Natamicina/uso terapêutico , Norisoprenoides , Receptores Depuradores Classe E/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Eur J Pharmacol ; 924: 174955, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35436473

RESUMO

Fungal keratitis is a corneal infection, which severely impairs vision. The fungal pathogen provokes host immune response, but the excessive inflammatory response causes significant collateral damage to the cornea. Eugenol, the main component of clove oil, has been found to have a broad range of pharmacological activities including anti-microbial, antioxidation and anti-inflammation. However, the role of eugenol in Aspergillus fumigatus (A. fumigatus) keratitis is unknown. In this study, we demonstrated that eugenol reduced mice keratitis severity, inflammatory cells infiltration, pro-inflammatory cytokine expression, and the fungal load. Eugenol also decreased the expressions of pro-inflammatory cytokines in human corneal epithelial cells (HCECs). We confirmed that the anti-inflammatory effects of eugenol were related to activating nuclear factor erythroid 2-related factor 2/Heme Oxygenase-1 (Nrf2/HO-1) signaling pathway. Moreover, we demonstrated that eugenol could inhibit the A. fumigatus growth and adhesion to host cells, as well as damage the fungal biofilm. The antifungal mechanism seemed to be disrupting the integrity of the fungal membrane and reducing the biosynthesis of ergosterol. Taken together, our research suggested that eugenol exerted protective effects on mouse A. fumigatus keratitis, due to its anti-inflammatory and antifungal activity.


Assuntos
Aspergilose , Ceratite , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Citocinas/metabolismo , Eugenol/farmacologia , Eugenol/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
15.
Exp Eye Res ; 216: 108960, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085580

RESUMO

Fungal keratitis is one of leading reasons for blindness in the world, which causes corneal blindness mainly due to excessive inflammatory responses. Kaempferol (KAE) is a natural flavonoid which has potent anti-inflammatory effects. However, whether KAE plays protective roles in fungal keratitis and the potentially protective mechanisms are unrevealed. Here we first investigated the anti-inflammatory and antifungal effects of KAE on Aspergillus fumigatus (A. fumigatus) keratitis in C57BL/6 mice. We found that treatment of KAE ameliorated the severity of keratitis, inhibited macrophages and neutrophils recruitment, depressed corneal fungal load, and declined the expression of TLR4 and Dectin-1 in A. fumigatus infected mice corneas. And in activated hyphae or Curdlan stimulated macrophages, pretreatment of KAE also significantly decreased the mRNA and protein expression of IL-1ß, TNF-α, MIP-2 and the phosphorylated-p38 (p-p38)/p38 MAPK ratio. In summary, KAE ameliorated the prognosis of fungal keratitis in C57BL/6 mice by reducing corneal fungal load, depressing the inflammatory cells recruitment, and downregulating the expression of inflammatory factors, and those effects depended on the inhibition of Dectin-1 and p38 MAPK pathway.


Assuntos
Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Úlcera da Córnea/tratamento farmacológico , Infecções Oculares Fúngicas/tratamento farmacológico , Quempferóis/uso terapêutico , Lectinas Tipo C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Contagem de Colônia Microbiana , Úlcera da Córnea/metabolismo , Úlcera da Córnea/microbiologia , Modelos Animais de Doenças , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Feminino , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Prognóstico
16.
Curr Eye Res ; 47(3): 343-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766863

RESUMO

PURPOSE: To investigate the anti-inflammatory and antifungal role of α-melanocyte stimulating hormone (α-MSH) in Aspergillus Fumigatus (A. fumigatus) keratitis. METHOD: Corneas of C57BL/6 mice were infected with A. Fumigatus. α-MSH (5 ul, 1×10-4 mmol/ml) was given by subconjunctival injection from day 1 to day 3 post infection (p.i.). After 3 days p.i., clinical score was recorded and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Proinflammatory mediators and pattern recognition receptors (PRRs) were detected. The number of neutrophils and macrophages was tested by immunofluorescence staining. The role of α-MSH in RAW264.7 cells after A. fumigatus stimulation were evaluated by PCR and Western blot, and MPKA protein levels including total-JNK (T-JNK), phosphorylated-JNK (P-JNK), total-ERK (T-ERK), and phosphorylated-ERK (P-ERK) were tested via Western blot with or without α-MSH treatment. RESULTS: Compared with PBS control group, α-MSH treatment alleviated disease response and decreased clinical score at 3 days p.i. HE staining showed less infiltration in corneal tissue after α-MSH treatment. Plate counting experiment showed that number of viable fungus in corneas of α-MSH treated group was less than control group. mRNA levels of IL-1ß, TNF-α, IL-6, MIP-2, LOX-1, Dectin-1, and iNOS were decreased. Protein levels of IL-1ß, TNF-α, IL-6, and Dectin-1 were decreased. α-MSH treatment also decreased the infiltrating neutrophils and macrophages. The levels of proinflammatory cytokines, Dectin-1 and LOX-1 stimulated by A. fumigatus, were also suppressed by pretreatment of α-MSH in RAW264.7 cells. The ratio of P-JNK/T-JNK and P-ERK/T-ERK was downregulated in α-MSH group compared with PBS control group. CONCLUSION: α-MSH alleviates the severity and decreases fungal load of A. fumigatus keratitis in mice. Migration of neutrophils and macrophages are restrained. α-MSH downregulates the expression of dectin-1 and the ratio of P-JNK/T-JNK and P-ERK/T-ERK in A. fumigatus infection.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Anti-Inflamatórios/farmacologia , Aspergillus fumigatus/fisiologia , Modelos Animais de Doenças , Infecções Oculares Fúngicas/microbiologia , Interleucina-6 , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe E/uso terapêutico , Fator de Necrose Tumoral alfa , alfa-MSH/uso terapêutico
17.
Curr Eye Res ; 47(4): 517-524, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34797193

RESUMO

PURPOSE: This study aimed to investigate the anti-inflammatory effect and antifungal effect of punicalagin in murine fungal keratitis. METHODS: We used in vitro and in vivo protocols to assess the anti-inflammatory effect and antifungal effect of punicalagin. In vitro, time kill and mycelial stain were done. In vivo, murine fungal keratitis was established and treated with PBS or PUN. Clinical scores were taken on days 1, 3, and 5 post infection. The mRNA and protein levels of inflammatory factors were detected by RT-PCR and Western blot, and the number and location of macrophages were analyzed by flow cytometry and immunofluorescence. Also, fungal plate counting was used to assess the antifungal effect. The DCFH-DA fluorescence probe detected the ROS level. RESULTS: In vitro, PUN showed activity against A.fumigatus. (A.F.), with MIC90 values of 250 µg/ml, and significantly reduced A.F. biofilm formation (p < .001). In vivo, the mouse fungal keratitis model after punicalagin treatment exhibited less disease, lower clinical scores (p < .05), lower reduced macrophage infiltrate (p < .001), and fungal load (p < .001) than those treated with PBS. Treatment with punicalagin also reduced the mRNA expression and protein level of pro-inflammatory factors. At the cellular level, PUN significantly reduced the mRNA expression of inflammatory factors and ROS production caused by the stimulation of mycelia in RAW264.7 (p < .001). CONCLUSIONS: The results show that punicalagin is beneficial in the treatment of murine fungal keratitis. The mechanism of its anti-inflammatory effect was synthetical, including antifungal activity, an inhibitory effect of proinflammatory factor and macrophages, and anti-oxidation.


Assuntos
Aspergilose , Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Animais , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/metabolismo , Aspergillus fumigatus/fisiologia , Úlcera da Córnea/tratamento farmacológico , Modelos Animais de Doenças , Infecções Oculares Fúngicas/microbiologia , Taninos Hidrolisáveis , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Espécies Reativas de Oxigênio
18.
Int Immunopharmacol ; 97: 107706, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33933850

RESUMO

PURPOSE: To determine the role of galectin-3 (Gal-3) in cornea infected by Aspergillus fumigatus (A. fumigatus). METHODS: Gal-3 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were pretreated with or without rmGal-3 or Gal-3 siRNA and infected with A. fumigatus. Recombinant mouse (rm) Gal-3 stimulated polymorphonuclear neutrophilic leukocytes (PMNs). PMNs were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of Gal-3 siRNA. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of Gal-3, interleukin (IL)-1ß, IL-6, macrophage inflammatory protein 2 (MIP-2) and p-p38. PMNs infiltration was assessed by flow cytometry and myeloperoxidase (MPO) assay. RESULTS: Gal-3 expression was significantly elevated by A. fumigatus in mice corneas. rmGal-3 treatment increased clinical scores, PMNs infiltration, and cytokines expression, which were decreased by Gal-3 siRNA treatment. In PMNs, Gal-3 expression was also significantly increased by A. fumigatus. The rmGal-3 treatment upregulated proinflammatory cytokines secretion and p-p38 expression, which was significantly inhibited by Gal-3 siRNA. CONCLUSION: These data proved that A. fumigatus increased Gal-3 expression and elevated disease clinical scores, PMNs infiltration and cytokines expression through Gal-3. In PMNs, A. fumigatus upregulated IL-1ß and IL-6 secretion through the Gal-3 / p38 pathway.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Galectina 3/metabolismo , Ceratite/imunologia , Neutrófilos/imunologia , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Modelos Animais de Doenças , Feminino , Galectina 3/administração & dosagem , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ceratite/microbiologia , Ceratite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Regulação para Cima/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Invest Ophthalmol Vis Sci ; 61(6): 51, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32579678

RESUMO

Purpose: The purpose of this study was to investigate the therapeutic effect of perillaldehyde (PAE) on Aspergillus fumigatus (A. fumigatus) keratitis. Methods: Human corneal epithelial cells (HCECs) were pretreated with PAE and stimulated with A. fumigatus mycelium. C57BL/6 mice were infected with A. fumigatus and treated with or without PAE 1 day after infection. Clinical scores, PCR, ELISA, and Western blotting were used to detect the expression of pro-inflammatory mediators, dendritic cell-associated c-type lectin-1 (Dectin-1), nuclear factor (erythroid-derived 2) like 2 (Nrf2), and heme oxygenase (HO-1). Nrf2 expression in HCECs pretreated with PAE was observed by immunofluorescence. NIMP-R14 protein expression and localization in mouse corneas were observed by immunofluorescence staining after treatment with PAE. Corneal colony counting, time-kill tests, and mycelial transformation inhibition tests were used to evaluate the antifungal effect of PAE. Results: C57BL/6 mice treated with PAE at 1 day after infection had a lower clinical score and decreased IL-1ß, TNF-α, IL-6, Dectin-1, and MPO levels. PAE treatment significantly reduced neutrophil recruitments to the corneal stroma. Compared with the DMSO-treated group, PAE treatment significantly decreased mRNA and protein levels of pro-inflammatory cytokines and Dectin-1 in HCECs. PAE pretreatment before A. fumigatus stimulation obviously elevated the mRNA and protein levels of components of the Nrf2/HO-1 axis. HCECs pretreated with PAE before infection showed a weakened ability to inhibit inflammation in the presence of brusatol (BT; an Nrf2 inhibitor) or ZnPP (an HO-1 inhibitor). PAE treatment significantly reduced the fungal load of C57BL/6 mouse corneas and inhibited fungal growth in vitro. Conclusions: These data proved that PAE may ameliorate A. fumigatus keratitis by activating the Nrf2/HO-1 signaling pathway and inhibiting the Dectin-1 mediated inflammatory response and neutrophil recruitment. Furthermore, PAE exerts direct fungicidal activity on A. fumigatus.


Assuntos
Infecções Oculares Fúngicas/tratamento farmacológico , Regulação da Expressão Gênica , Ceratite/tratamento farmacológico , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Monoterpenos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/isolamento & purificação , Modelos Animais de Doenças , Epitélio Corneano/metabolismo , Epitélio Corneano/microbiologia , Epitélio Corneano/patologia , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Feminino , Humanos , Ceratite/metabolismo , Ceratite/microbiologia , Lectinas Tipo C/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , RNA/genética , Transdução de Sinais
20.
J Neurol Surg A Cent Eur Neurosurg ; 81(6): 501-507, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559770

RESUMO

PURPOSE: To explore factors affecting the prognosis of choroidal anterior artery aneurysm (AChAA) and provide a reference for improving the postoperative outcome. METHODS: The clinical data of 86 patients with AChAA who underwent treatment by a single surgeon were collected and analyzed retrospectively. Univariate analysis and multivariate logistic regression analysis were conducted to examine 12 factors that possibly affected outcome. RESULTS: The five factors that affected the patient outcomes were times of subarachnoid hemorrhage (SAH), characteristics of SAH on computed tomography (CT), Hunt-Hess grade, aneurysm size, and presence or absence of postoperative complications. Characteristics of SAH on CT (odds ratio [OR]: 3.727; p = 0.000; 95% confidence interval [CI], 1.850-7.508), aneurysm size (OR: 6.335; p = 0.000; 95% CI, 2.564-15.647), and presence or absence of postoperative complications (OR: 4.141; p = 0.000; 95% CI, 1.995-8.599) were independent risk factors influencing the prognosis. In addition, the incidence of postoperative ischemia (caused by anterior choroidal artery syndrome) is related to the aneurysm emitting part and presence or absence of intraoperative rupture. CONCLUSIONS: The analysis of characteristics of SAH on CT, aneurysm size, and presence or absence of postoperative complications can roughly determine the outcome of patients with AChAAs.


Assuntos
Artérias Cerebrais/cirurgia , Revascularização Cerebral/métodos , Aneurisma Intracraniano/cirurgia , Hemorragia Subaracnóidea/cirurgia , Adulto , Idoso , Aneurisma Roto/cirurgia , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Isquemia/etiologia , Isquemia/terapia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Hemorragia Subaracnóidea/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...